
1

Tackling legacy
projects;
an experience
in Perl

Samuel Andras
Business Development



2

Intro
Legacy code is a frightful term, one that most 
developers resent, and for good reason. However,  
there are several misconceptions about legacy code 
in general, misconceptions that we’d like to clear and 
offer a different perspective on a topic that is a big part 
of the tech scene. Let’s be frank, everybody works on 
a legacy project at one point in time, so it might help 
looking at it a bit differently. 

Going from causes to solutions, through the tunnel of 
legacy code, we also explore how Perl fits in the legacy 
scene, covering a case study for a legacy project that 
required some grunt work. 

Whether you are involved with a legacy project, or if 
you will be involved in the future, this ebook will help 
flesh out a different outlook on the concept itself, Perl 
projects included. 

This ebook is for developers, testers, managers and 
business individuals working on tech projects that are 
or will become legacy. 

Many thanks to all my colleagues at Evozon 
who contributed to this ebook.



3

Contents

Intro

Legacy Code

Causes 

Perspective 

Consequences and solutions 

Rewriting and refactoring 

Perl

Case study: Perl legacy project rewrite  

Future legacy  

2

4

6

10

11

12

13

14

16



4

Code which is unsupported, undocumented, that does 
not respect (current) programming best practices. 
A codebase that is or was constantly patched, rather 
than coded based on a carefully laid out plan with 
clear requirements.

Code that was written by someone else with another 
mindset, different standards, using a different 
methodology or architecture. However, legacy code 
can also be your own code, written under 
different circumstances.  

Code which was not tested, that has 
unknown dependencies tied to it. 

Legacy Code

Because of the different perceptions of the notion 
itself, there are lots of definitions for legacy code.

Here are a few definitions we put together to 
encompass the main characteristics and complexity of 
the term legacy:

Although the word legacy has a 
positive meaning, if you add code 
at the end of it, you get something 
filled with negativity. One thing 
that should be mentioned, among 
all the negativity, is that legacy 
code is production code that 
works. It may be ugly, scrambled 
and hard to comprehend, but it 
works.  

If you have to work with it, make 
changes, add new features, that’s 
another story. It’s a situation  
similar to a Jenga tower -  you have 
to be careful what you do, because 
if you make a wrong move -  it all 
comes towering down on you. 



5

However, most tech projects are under one form or another of legacy, 
it really depends on the state of the project. That being said, it’s a bit 
surprising that although there are quite a few developer surveys out 
there, the topic of legacy, or rather the importance of having a legacy or a 
greenfield project in a new job does not come up. 

Compensation, languages, frameworks, technologies and opportunities for 
development take the top 3 spots in the 2018 Stack Overflow survey, which, 
further analyzed might correlate with what legacy and greenfield projects 
have to offer, but the actual question of greenfield or legacy is rarely asked 
in the survey format. There is no doubt that the state of the code is a factor 
in taking on a project, but considering the ratio of greenfield to legacy 
projects, the question might be more in the lines of “How legacy is it?”.

Legacy code is a very comprehensive term, that includes different types of 
code, so offering a general definition is a challenge. 

HOW 
LEGACY 

IS IT



6

Causes

What turns code into legacy? 
Here are several causes that turn code into legacy code. Depending on 
your definition you might add a few things to this list. These apply to all 
programming languages, including Perl. 

There is a perception that all 
legacy code is old and that old 
code means bad or ugly code. An 
important thing to mention here 
is that code doesn’t age, it doesn’t 
show signs of decrepitude, it 
doesn’t gather dust, rust or go 
bad simply by the passing of time. 
If you leave it alone for a decade it 
will still work the same way. 

Different programming standards, using monoliths
Hacks and shortcuts due to time pressure
Developer turnover and loss of knowledge
Lack of documentation
Lack of code reviews
Lack of senior developers
Unsupported versions
Unsupported third party modules
More features that increase complexity beyond what 
the original system was designed for
Shoddy programming
Bad programming practices



7

However, changes happen -  technology moves 
forward, new versions of software are no longer 
compatible with the original code, new tools come 
into the scene, businesses have new needs and 
products have to adapt. 

Changes in tech are just one side of the story, the 
other side is filled with unfortunate actions that can 
create a bad legacy codebase or a gruesome one. 
Developers do fixes, slap on new features, one way 
or the other, usually going beyond what the original 
architecture had in store. This can happen over the 
course of several years, and a codebase that was 
supposed to go in one direction starts sprouting seeds 
all over the place. It gets bigger and bigger, patched 
and fixed, until it slowly turns into the monster that 
another developer has to handle.

There are different layers to a legacy codebase, 
different spectrums of difficulty. It’s not pleasant, but 
it can be stub your toe on the door painful, or get hit 
by a train painful. 



8

Technical debt

When talking about legacy code, technical debt
cannot be overlooked. The two might not be 
equivalent, but they are connected.

  How do you get in debt?

It usually starts with something like this:

  “We need this done in six months 
  to get to market in time!”

That sentence brings a whole cascade of events that in the end create a 
monster of a codebase. Market trends influence the way companies build 
products, the way technology is used and overall, the way codebases are 
built in time. 

It’s really hard, near to impossible to be without any technical debt. When 
companies are started the roadmap only goes to a certain point, there’s 
only so much you can predict and code accordingly. Deadlines for product 
or feature launches only make things worse, they might be good for the 
business, but they will have code consequences on the long run. 

Growth also happens in stages, if a company aims to become a market 
leader or wants to create a breakthrough product and prepares 
accordingly, it will spend a lot more time preparing and might miss its 
window of opportunity. Instead of becoming a market leader they become 
a cautionary tale. 

For startups, the architecture and design are very much focused on the 
near future, to get to market as fast as possible, to build a following, to 
launch a product, to get a foothold in a niche market. If it’s an established 
company, there may be a new functionality or module that needs to be 
done in the same manner, the same hurried pace.  

Overall, technical debt adds up, a sure and fast path to a legacy codebase, 
the state of which depends a lot on the circumstances - not all legacy code 
is created equal.



9

Perl legacy projects

One factor that exists in every discussion about legacy projects - 
irrelevant of the programming language, is technology evolution. As the 
environment changes, as the tools, standards and thinking progresses, 
codebases built in another era become legacy. 

In the case of Perl, quite a few of the existent legacy codebases can be 
traced to the heavy usage of CGI in the 90’ and even the early 00’. That’s 
not to say that CGI is to blame, it was the right technology at the time. 

TMTOWTDI is something that deserves a bit more explaining as it’s a 
roadblock in dealing with legacy projects. TMTOWTDI  is a principle that 
allows you more flexibility and freedom in programming, but at the same 
time, makes life harder for those that come after you. When reading and 
interpreting someone else’s code, the way you would imagine yourself 
doing it, can be light years away from how someone else actually did it. 

In Perl Medic: Transforming Legacy Code, Peter J. Scott said:  

“Because there are so many ways to write a Perl program that is not 
only syntactically correct (Perl makes no objection to running it) but 
also semantically correct (the program does what it’s supposed to—at 
least in the situations it’s been tried in), there is a wide variety of Perl 
programming styles that you might encounter, ranging from beautiful 
to what can charitably be described as incomprehensible.”

Consistency is a good principle to follow, especially in large scale 
projects where development goes on constantly, for years or decades. 
TIMTOWTDIBSCINABTE is a part of that. 

Other contributing factors are:

developers that were not professional programmers
junior developers without an appropriate ratio of   
senior developers
lack of frameworks that required creative solutions           
which proved untrustworthy on the long run 
lack of maintenance for CPAN modules 
out of date dependencies
TMTOWTDI



10

Perspective

Working on legacy code is on no ones bucket list, everybody wants a 
clean or a greenfield project where they can show off their skills and build 
beautiful code. But life is a bit different. 

The reaction to legacy code is to utterly hate and curse the developers that 
“gifted” such a monumental mess, but it might be worth to take a step 
back and think about it for a minute before reacting strongly to it. It’s an 
obstacle, but it’s not a dead end. Yes, it might be three layers of hell deep, 
but it can be dealt with, one way or another. 

There is without a doubt legacy code created by plain bad programming, 
but there is also legacy code created by people who did not have the 
knowledge or the resources that we have at hand today. People weren’t 
always Agile, didn’t always code to the standard that we have today. Perl, 
and its environment was not always as good as it is today. At the same 
time, business decision impacted the way a product was built, superseding 
developer qualms. 

The consideration that in the end all code becomes legacy code, should 
also dampen heightened spirits. 

How was your code a couple of years ago? If you have a look at it, do you 
feel content, proud or horrified? Is it because you lacked the skill you have 
now, the time, the resources or the ability to write different code?

The perspective you have when working with legacy code can influence 
the way you feel about your work and the way you approach it. It also 
should definitely define the way you create your own future legacy code. 
There are ways of dealing with legacy projects, they can 
be fixed, incrementally or totally - there is always 
a bright light at the end of the tunnel.



11

Consequences and solutions

All code will one day become legacy. There is no solution in solving this 
vicious circle, as long as technology keeps moving forward, today’s code 
will become tomorrow’s legacy. 

We have to deal with the legacy code that exists today and at the same 
time think about our own future legacy code. There are ways of dealing 
with the existent legacy code and there are precautions that we may take 
in order to shape the way code becomes legacy, and make things a bit 
easier for those that will code after us.  

Our legacy Perl working experience proved that improving incrementally 
is the first response and the best chance to move in the right direction. 
Refactoring the code is a good option for a legacy codebase, but 
sometimes a rewrite is needed. Most of the time it’s a combination of both. 

One thing that we advocate for, is that working code not be thrown away. 
If it’s ugly, it can be prettied up, if it’s inefficient, it can be optimized. In 
large-scale applications throwing away working code should not be an 
option taken lightly. 

Max Kanat-Alexander, in his book Code Simplicity wrote that you should 
only rewrite a system if all the following are true:

You have developed an accurate estimate that shows 
that rewriting the system will be a more efficient use 
of time than redesigning the existing system. 
You have a tremendous amount of time to spend on 
creating a new system.
You are somehow a better designer than the original 
designer of the system or, if you are the original 
designer, your design skills have improved drastically 
since you designed the original system.
You fully intend to design this new system in a series 
of simple steps and have users who can give you 
feedback for each step along the way.
You have the resources available to both maintain the 
existing system and design a new system at the same 
time. 



12

Rewriting and refactoring

These two terms usually come up on different sides of the fence, but it’s 
not really black and white, it’s mostly different shades of grey. 

Refactoring means making improvements to an existing software 
without altering its behaviour. If it changes the way the software 
works from the user’s perspective it is no longer refactoring.

Rewriting is, well, rewriting everything, using a different architecture, 
different business logic.

Going for one or the other is tricky and depends on a lot of things. There is 
also secret door number 3, the grey area, where you can do both. It really 
depends on the circumstances. 

When you refactor you use the same programming language, making 
changes that improve the code when it comes to performance and 
maintenance.  When you rewrite you can use the same programming 
language or a whole new one. For existent Perl projects the usual choice 
for a rewrite is Python. You can also rewrite a project in the same language. 
The rewrite can be small, where you redo a few functionalities or complete, 
where everything is rebuilt from scratch. 

The main purpose is to improve the project and comply with the business 
needs, you use whatever process you can to achieve that. Working code 
should not be thrown away, if it can be refactored then that’s a good 
option to go on, if not, then a rewrite is the next best thing. 

Refactoring Rewriting ?



13

The process where code becomes legacy is not 
related to any programming language. However, 
various factors contribute to transforming a codebase 
into a legacy codebase and the type of legacy 
codebase it becomes; including the nature of the 
programming language, its development, versioning, 
environment, programming pool and others. 

Considering the heightened popularity that Perl had 
in the 1990’s, its footprint remains massive to this day, 
including under legacy form. A lot of Perl developers 
today work on legacy systems, our Perl division is 
no different.



14

Case study: Perl legacy project rewrite

Dealing with legacy projects, no matter the programming language, is 
something that every developer goes through at one point. We also had 
quite a few experiences working with legacy projects on Perl. There is no 
clear cut way to deal with them, whether it’s Perl or another language, you 
adapt to the circumstances.

Here’s one of our experiences working on a Perl legacy project, one that 
we refactored and rewrote. The decision to rewrite it was taken after client 
consultation and taking into account the current state of the system and 
the desired state of the system. Refactoring it completely was not an 
option as the architecture itself was not suitable for the current needs. 

The rewrite project took 9 months for a team of 3 developers. 

We rewrote a main part of the business in Perl, an ETL system that had a 
huge impact on the business processes. Our client’s entire product line 
relied on this system, as such, we had to take into account every single 
detail that may have an impact on the quality or data integrity. 

Making the correlation to legacy code and old code, this was actually a 
pretty new project, just 4 years old, but with several add ons, fixes and 
patches over the years. In those 4 years a lot of people worked on the 
project, so there was a hefty dose of personal marks. None of the folks who 
actually worked on the code were in the company at the time we worked 
on it so there was no transfer of knowledge on the coding level, only on the 
business level. 

For the record we changed a lot of the project logic, improving the process 
itself and also adding a few things. Although it was mostly a rewrite job, we 
also improved some things that would fall in line with refactoring. 

In time the data volume increased substantially and it continued to grow, 
the system couldn’t handle it anymore, the processing time was too long 
and increasing. The lack of performance was damaging the business. 
At the same time, the data complexity also grew, making maintaining it 
difficult and building on top of it grueling. 

The constant patching and developer turnover made it very bug happy, a 
lot of things were overlooked so the quality of the products that relied on 
the data processed by the ETL system suffered. The system was really hard 
to maintain and could not scale to suit the current business needs. 



15

Challenges

The main challenge was rethinking the entire architecture so that it 
becomes easy to maintain in the future, whilst also remaining scalable. The 
rewrite was necessary, but we were fully aware that during this process 
we could also make new mistakes that might hamper other people in the 
future, so planning ahead and making sure that we did cover every corner 
was our greatest challenge. 

The entire project was data oriented, so understanding the dataset in such 
a way that we understood any and all implications related to them was 
crucial. Even though there were no developers around that worked on the 
existent code, the business analysis people on the client side were very 
helpful. They also helped us a lot in understanding what we could get rid 
of, and what should stay in.

When it came to the code itself, things changed a bit. The TMTOWTDI 
principle and the freedom in synthax made our lives really hard. We 
needed a lot of time and patience to understand the code and to 
understand why certain things were done in a certain way. A few of them 
we gave up on as they were too convoluted. Overall, the code was very 
hackish.

Another drawback, strictly related to Perl, or the Perl environment, was 
the fact that several of the CPAN modules that were in use, were also no 
longer maintained or had little to no documentation. We took a lot of time 
to analyze the modules, what they did, how they worked to be able to 
understand their role in the grand scheme of things. 

As the system relied on a lot of AWS services, paid services, we also had 
to balance efficiency and financial cost. Last, but not least, an overall 
challenge was managing and structuring what at a first glance seemed 
and was a tremendous amount of work.

Approach

The first step was analyzing in great detail the current implementation, 
identifying major and minor issues. We managed this by isolating the code 
logic in pieces, then analyzing it integrated with other system parts. It was 
a long and time consuming process, but it proved very effective. 

Afterwards we regrouped and reimplemented the system logic, by 
structuring it in many different and separate pieces. 



16

Result

The overall result was a product that was scalable, maintainable, with 
several improvements in performance. It ticked every box that the client 
had when we started the project.

Although it was a rough experience for the development team, in the end 
it had its rewards. Besides the work itself and the result, they also learned a 
lot of things about clean programming, architecture and the other side of 
the coin when it comes to flexibility in coding. 

Our work was documented in order to make the future legacy code a lot 
easier to handle for the people that come after us.  

Future legacy

As previously mentioned, all code will become legacy. The when 
and the how depends, that’s a separate conversation. 

Creating a modern Perl codebase that works well under today’s standards, 
and that will work in the future as well, after developer rotations, standard 
changes, after tools deprecate and modules are abandoned - is not an 
easy task. There’s only so much you can future proof.  

Frameworks won’t be maintained, the language may fall out of favour of 
future, trends will change, times will change and what you write today will 
be viewed as obsolete.

But developers have control of the code, if you code following good 
programming principles, if you use unit testing, code reviews, write 
documentation, your conscience should be clear. Business decisions, 
technology evolutions and other factors that contribute to a hard to 
handle legacy codebase have their share to blame, but that’s something 
that’s usually out of reach of the developer.

There will always be legacy code, the important thing is to tackle it better, 
to make sure that you avoid creating another mind numbing legacy code 
in the future. It will still be legacy code one day, but it’s a different story if 
it’s just bad or darn right impossible.



17

Evozon is a software development company founded in 2005 as a Perl and 
Java shop. We currently cover a wide-range of technologies and industries 
and have more than 500 personnel. Our Perl division is one of the largest 
service based teams in Europe and through an expansion to Python, we 
can now cover Perl, Python and mixed technology projects, including 
legacy code transitions.

Samuel Andras
Business Development
 
samuel.andras@evozon.com
evozon.com


